
Edge Detection Using Streaming SIMD Extensions On Low Cost
Robotic Platforms

Matthias Hofmann, Fabian Rensen, Ingmar Schwarz and Oliver Urbann∗

Abstract— Edge detection is a popular technique for ex-
tracting features on images. To this end, the Sobel operator
is one of the most widely used methods. However, building
efficient applications that make use of Sobel on systems with
restricted computational power is difficult. This is due to the
fact that Sobel requires runtime-intensive computations such
as the two-dimensional convolution. Hence, the goal of this
work is to significantly speed up the computation time that
is required for the Sobel operation. Thus, we use Streaming
SIMD Extensions that define specific assembler commands.
We compare the runtime of the SSE implementation with a
standard implementation which does not make use of SSE.
Our experiments show a relevant boost of performance.

I. INTRODUCTION AND RELATED WORK

Processing image data on high frame rates plays a vi-
tal role in various domains, e.g. robot soccer. Efficient
algorithms are especially important for applications with
restricted computational power, e.g. low cost robotics plat-
forms. For our work, we use the NAO robot from Softbank1.
Our work aims to fulfill the soft real-time capability as
best as possible. This means that the computation of two
parallel HD images on 30 Hertz is desirable2, but not critical
if the algorithm does not provide results after 33ms. The
algorithm is executed by the processor along with other
algorithms, e.g. for artificial intelligence, motion control, and
localization. These parts may require significant runtime in
robotic applications as well.

Thus, it is desirable to minimize the runtime of the image
processing system. Edge detection is a widely used approach
for extracting features from the individual image. There is a
vast amount of edge detectors, e.g. the Sobel operator [1],
the Canny edge detection [2], and the Prewitt operator [3]. In
the domain of robot soccer, these features may be used for
further processing, i.e. detecting the ball, recognizing other
robots, or extracting field lines. Many algorithms, such as the
Hough transformation [4], or the Harris corner detection [5]
are based on edge images. In the domain of smart vehicles,
Gavrila and Philomin describe an image processing system
based on edge detection [6] that is used to detect pedestrians.
Since autonomous driving is a critical task, the system may
even fulfill the hard real-time constraint. This means that if
there is no result of an algorithm after a specific time frame,
the system may cause a critical incident. For this reason,
performing a runtime optimization is a reasonable approach.

∗Robotics Research Institute, TU Dortmund University, Germany
<forname.surname>@tu-dortmund.de

1https://www.ald.softbankrobotics.com/en/
cool-robots/nao

2The NAO camera provides at most 30 images a second.

Kim et. al [7] describe such an optimization with respect to
specific hardware architectures.

This paper is structured as follows: Section II describes the
basics of SSE and the Sobel operator. A detailed explanation
of our implementation is given in section III. Section IV
shows our results and future work is outlined in section V.

II. FUNDAMENTALS

A. SSE in detail

SSE is able to operate on multiple data at the same time.
For this purpose, it introduces eight new processor registers
of one type, named XMM0 to XMM7. In comparison to its
predecessor Multi Media Extension (MMX), SSE registers
may hold floating point numbers. The size of each register
is 128 bit3, and stores one of the following combinations of
different data types:
• 2 floating point numbers (each 64-bit, double precision)
• 4 floating point numbers (each 32-bit, single precision)
• 4 integers (each 32-bit, signed or unsigned)
• 8 integers (each 16-bit, signed or unsigned)
• 16 integers (each 8-bit, signed or unsigned)
Moreover, SEE defines the following set of standard

commands that perform calculations on the registers:
• load and store
• pack and unpack
• logical operations (i.e. AND, NAND, OR, XOR)
• arithmetical operations (i.e. bit shifting, addition, av-

erage, maximum, minimum, multiplication, division,
subtraction)

• comparison operations (i.e. equal, greater, less, greater
equal, etc.)

Since SSE provides assembler commands, various com-
pilers provide a set of SSE intrinsics. To make use of these
functions in C++, one of the standard headers (Table I) must
be included in the source code. The headers are backward-
compatible. For a full include graph refer to the Clang
documentation.4.

For our study, we use SSSE3 on the NAO v5 robot
by Softbank robotics5. Most compilers (e.g. GCC, Clang,
MSVC) perform optimization steps while translating the
code into the corresponding SSE commands. Therefore, the
resulting assembler code may differ from the C++ code.

3Recent Intel processors support Advanced Vector Extensions 256-bit
registers. In our study, we use the NAO robot that offers 128-bit SSE
registers.

4http://clang.llvm.org/doxygen/index.html
5https://www.ald.softbankrobotics.com/en/

cool-robots/nao

TABLE I
COMPILER INTRINSICS AND CORRESPONDING C++ HEADERS.

Header file Version

mmintrin.h MMX
xmmintrin.h SSE
emmintrin.h SSE2
pmmintrin.h SSE3
tmmintrin.h SSSE3
smmintrin.h SSE4.1
nmmintrin.h SSE4.2
ammintrin.h SSE4A
wmmintrin.h AES
immintrin.h AVX
x86intrin.h All available intrinsics (Clang and GCC, x86)
intrin.h All available intrinsics (MSVC)

B. Sobel Operator

The Sobel operator approximates the gradient (i.e. the
first derivative) of the image intensity by calculating the 2-
dimensional discrete convolution of a filter mask, and the
image intensity values. There is a vast of amount of similar
algorithms that utilize different filter masks, e.g. the Prewitt
operator [3]. The filter masks of the Sobel operator are shown
in equations 1 (horizontal) and 2 (vertical) [1].

Mx =

−1 0 +1
−2 0 +2
−1 0 +1

 (1)

My =

−1 −2 −1
0 0 0
+1 +2 +1

 (2)

For each pixel, the sum of the intensity values are multiplied
by the corresponding values of the filter masks. Let I
denote the 2-dimensional image. This way, the 2-dimensional
convolution can be written as

Gx =Mx ∗ I (3)
Gy =My ∗ I (4)

If we combine the horizontal and vertical directions, the
gradient magnitude is:

G =
√
G2

x +G2
y (5)

III. SSE IMPLEMENTATION OF THE SOBEL OPERATOR

An implementation of the Sobel operator in SSE requires
loading the image into the SSE registers and computing the
convolution. The following subsections cover the procedures
and our implementation in detail.

A. Loading the Images Using SSE

We use the YUV422 color space to process images pro-
vided by the camera of the NAO robot6 since it is its native
format. In this color space, two adjacent pixels share the
color information, but each pixel has an individual intensity

6http://doc.aldebaran.com/2-1/family/robots/
video_robot.html

value. Figure 1 shows the storage of the image in the main
memory.

We exclusively load the intensity values of the pixels
into the SSE registers as they serve as an input for the
edge detection. For the load procedure, we utilize the SSE
unpack operations. The unpack operation copies half of a first
register, and half of a second register into a new allocated
register in an alternating manner. Figure 2 visualizes the
unpack operation for 8-bit interpreted registers.

We use the operations to deinterlace the YUV values,
i.e. the intensity values are stored consecutively, and in the
desired order. To this end, we load two successive chunks
of 128 bit image data into two SSE registers, and perform
four lower and three upper7 unpack operations. We save the
results of the operations in two registers: One contains the
intensity values, and the other contains the color information.
Figure 3 depicts the register contents during each unpack
step.

B. Calculating the Convolution

We subsequently calculate the convolution. To this end,
we load sixteen values into each individual register. Since
the intensity values range from 0 to 255 (unsigned 8-bit), it
is required to conduct an approximation to prevent overflows.
The following step is executed for horizontal edge detection
for every pixel Pi,j at position (i, j):

Gx(Pi,j) = Pi+1,j−1 + 2 · Pi+1,j + Pi+1,j+1

−Pi−1,j−1 − 2 · Pi−1,j − Pi−1,j+1 (6)

It follows that the value of the sums range from −4 · 255
to 4 · 255. For edge detection, only the gradient magnitude
is relevant. Thus, we split the sums into a negative and a
positive part. Consequently, the two partial sums now range
from 0 to 4 · 255 which makes dividing the initial mask by
4 sufficient to prevent from overflows.

This way, equations (1) and (2) become

M ′x =
1

4
Mx =

− 1
4 0 + 1

4
− 1

2 0 + 1
2

− 1
4 0 + 1

4

 (7)

M ′y =
1

4
My =

− 1
4 − 1

2 − 1
4

0 0 0
+ 1

2 + 1
2 + 1

4

 (8)

There is another restriction imposed by SSE. It performs
computations in a strictly vertical manner, e.g. an addition
is only possible between two values which are located at the
same indexes of two individual registers. But equation (6)
reveals that the computation for one resulting pixel requires
access of eight neighbored values. We solve the problem by
loading three rows of data8, and then shifting these rows
according to the convolution. Figure 4 visualizes the very
procedure for the horizontal case. SSE offers bit-shifting on

7Only three higher unpacks are necessary since we do not evaluate the
color information.

8One for each matrix row.

Y0 U0 Y1 V0 Y2 U1 Y3 V1 ...

Address range

8 bit

Fig. 1. The robot’s image in the main memory.

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

a0 a1 a2 a3 a4 a5 a6 a7b0 b1 b2 b3 b4 b5 b6 b7

Input b

Input a

Output

Fig. 2. Unpack lower halves for 8-bit values (mm unpacklo epi8(a,b)).

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15U0 U1 U2 U3 U4 U5 U6 U7V0 V1 V2 V3 V4 V5 V6 V7

Y0 Y8 Y1 Y9 Y2 Y10 Y3 Y11 Y4 Y12 Y5 Y13 Y6 Y14 Y7 Y15U0 U4 U1 U5 U2 U6 U3 U7V0 V4 V1 V5 V2 V6 V3 V7

Y0 Y4 Y8 Y12 Y1 Y5 Y9 Y13 Y2 Y6 Y10Y14 Y3 Y7 Y11Y15U0 U2 U4 U6 U1 U3 U5 U7V0 V2 V4 V6 V1 V3 V5 V7

Y0 Y2 Y4 Y6 Y8 Y10Y12Y14 Y1 Y3 Y5 Y7 Y9 Y11Y13Y15U0 U1 U2 U3 U4 U5 U6 U7 V0 V1 V2 V3 V4 V5 V6 V7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10Y11Y12Y13Y14Y15 U0 U1 U2 U3 U4 U5 U6 U7V0 V1 V2 V3 V4 V5 V6 V7

register a register b

un
pa

ck

mm unpacklo epi8(a,b) mm unpackhi epi8(a,b)

Fig. 3. Deinterlacing of YUV422 pixels using SSE unpack operations.

register level for some register sizes. However, we need to
shift the register by the number of bits of one value (i.e.
8-bit). Since SSE does not provide this kind of bit-shifting
operation, we implemented it.

Figure 5 further explains the calculation with bit shifted
registers. In this regard, P1 is the first element of the non
shifted register, P2 is the first element of the register shifted
by one, and P3 is the first element of the register shifted by
two. If the registers are divided by 1/2 and 1/4 respectively
(according to equations (7) and (8)) and cumulated, and all
registers are cumulated, the resulting register contains the
desired sums. A similar procedure using different shifts is
necessary for the vertical sums.

The last step is the calculation of the magnitude of
the gradients. This operation requires two power, and one
square root operation. Due to integer intrinsics, it is not
possible to calculate the exact values. Moreover, this would
create another overflow issue. Hence, we need to perform an
approximation according to Griffin 9:

9http://www.dspguru.com/dsp/tricks/
magnitude-estimator

√
G2

x +G2
y ≈ α ·max(Gx, Gy) + βmin(Gx, Gy) (9)

Choosing α = 1 and β = 0.25 gives a largest error of
approximately 11.61%, and a mean error of approximately
0.65%. Parameter studies for α and β yield better results,
but setting α = 1 does not impose a register to be altered,
and β = 0.25 is merely bit shifted by two. This way, the
magnitude estimation replaces two power and one square
root operations with one maximum, one minimum, and one
bit shift operation while still being close to the exact value.

IV. RESULTS

We expect that the SSE approach accelerates the Sobel
operator by more than 14 times compared to the sequential
approach. That hypothesis follows from the simultaneously
computation of 14 values, and the approximation of the
gradient magnitude, from which we expect to be computed
faster than the more complex square root, and exponentiation
operations. Moreover, the classic approach does not make use
of pointer arithmetic.

row 0 shifted by 1 row 0 shifted by 2

row 2 shifted by 1 row 2 shifted by 2

P1 P2 P3

P4 P5 P6

Fig. 4. Row shifting used for calculating the convolution, horizontal sum. P1 to P6: Pixel intensity values loaded into SSE registers.

1
4 · P2 P3 P4

. . .

1
2 · P3 P4 P5

. . .

1
2 · P1 P2 P3

. . .

+

Fig. 5. The three resulting registers from bit shifting. The top row can be used to calculate the correct sum without using random access.

TABLE II
RESULTS OF THE TIMING ANALYSIS ON A NAO V5

Approach Minimum (ms) Maximum (ms) Average (ms) Frequency Avg (fps)

Classic 370.157 379.786 375.283 2.435
8-bit SSE 9.490 11.166 10.234 29.654

The performance evaluation was executed on the NAO
robot during a test game of two minutes. To this end, a
profiling analysis with respect to the SSE Sobel implemen-
tation was conducted. Table II shows the timing results for
processing the Sobel image based on the image of the upper
camera (1280× 960 intensity values) of the robot.

It is cognizable that our SSE Sobel implementation speeds
up the computation by more than 14 times. This makes it
easier to calculate an edge image with respect to soft real-
time constraint. With an average runtime of 10.234 ms per
frame, and a frequency of 29.654 (which includes the overall
runtime of the cognition frame per second), we are now
able to compute at least all images provided by a single
(either upper, or lower) camera. Figures 6 and 7 are example
images: The first one is processed without SSE Sobel while
the second one is processed with our implementation. There
is no visual difference between the images.

Our implementation makes it possible to perform the
Sobel operation on specific regions of the image. More-
over, it is possible to calculate edge images by utilizing
the horizontal or vertical filter mask exclusively. This is
needed for algorithms such as the Harris corner detection
[5]. Our implementation is publicly available at https:
//github.com/NaoDevils/SSESobel.

V. FUTURE WORK

It is possible to transfer our approach to cutting-edge
processors that use more recent SSE versions, and larger
registers. Using a processor with 256-bit registers may result
into a doubling of performance of the Sobel operation.
Another idea for future work is to pre-calculate a matrix
containing the computation results of the gradient magnitude.
This would replace the magnitude estimation (see equation
9) by a lookup table. However, the disadvantage is that it
would consume more main memory.

REFERENCES

[1] D. Luo, Pattern Recognition and Image Processing. Amsterdam:
Elsevier, 1998.

[2] Y. Luo and R. Duraiswami, “Canny edge detection on nvidia cuda,” in
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW
’08. IEEE Computer Society Conference on, June 2008, pp. 1–8.

[3] J. M. S. Prewitt, “Object enhancement and extraction.”
[4] R. O. Duda and P. E. Hart, “Use of the hough transformation to

detect lines and curves in pictures,” Commun. ACM, vol. 15, no. 1,
pp. 11–15, Jan. 1972. [Online]. Available: http://doi.acm.org/10.1145/
361237.361242

[5] C. Harris and M. Stephens, “A combined corner and edge detector,” in
In Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[6] D. M. Gavrila and V. Philomin, “Real-time object detection for smart
vehicles,” in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 1, 1999, pp. 87–93 vol.1.

[7] C. G. Kim, J. G. Kim, and D. H. Lee, “Optimizing image processing
on multi-core cpus with intel parallel programming technologies,”
Multimedia Tools and Applications, vol. 68, no. 2, pp. 237–251, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s11042-011-0906-y

Fig. 6. Example image that is computed by Sobel without using SSE extensions.

Fig. 7. Example image that is computed by Sobel by using SSE extensions.

